

Long-term Multispectral Measurements of Skyglow Using Sky Quality Meters

Christopher Kyba^{1,2}, Thomas Ruhtz¹, Jürgen Fischer¹, Franz Hölker²

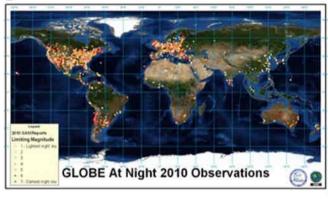
¹¹Freie Universität Berlin

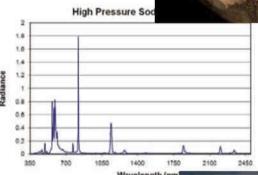
²Leibniz-Institute of Freshwater Ecology and Inland Fisheries

11th Dark Sky Symposium, Osnabrück
October 6, 2011

Verlust der Nacht (Loss of the Night)

VERLUST der NACHT

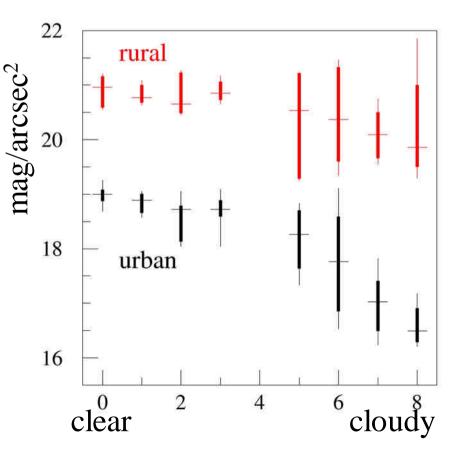

- Collaboration of 9
 Universities /
 Institutes
- 14 Integrated Subprojects
- Many aspects of light pollution considered, from measurement to ecology to sociology


Requirements for Long Term Light Pollution Monitoring Devices

- Must be robust
- In situ calibration should be possible
- Multispectral
 - Circadian disruption
 - Monitor shift to LED lighting
- Inexpensive / Easy to operate
- Temperature stable (ideally warmed)
- Zenith vs. 180°

Existing Light Pollution Detectors

- Human eye
- Phototubes
- Imaging spectrometers
- Digital color cameras
- Cell phone cameras
- Custom devices
- IYA Lightmeter
- SQM



Cloud Amplification of Light Pollution

- Urban overcast sky is
 ~10x brighter than clear
- Effect is reverse of what happens in nature
- Summer comparison published in Kyba et al., PLoS ONE (2011)

Prototype Detector

- Set of SQM-LU with 5 different filters
- Standard SQM-LU
- Luminous 370-700nm
- Red 590-690 nm
- Green 490-580 nm
- Blue 370-510 nm
- Operated April-Sept, 2011

Cross-Calibration and Alignment

Please contact me if you would like to see this data. It's not on the web to avoid prior-publication issues

 Compared at start and end of experiment

Preliminary Results 1

Please contact me if you would like to see this data. It's not on the web to avoid prior-publication issues

Preliminary Results 2

Please contact me if you would like to see this data. It's not on the web to avoid prior-publication issues

- Can monitor nightly and seasonal changes
- Can monitor long term switch to LED lighting
- Results could be used to build a "circadian exposure" dataset
- Work in progress

Acknowledgements

Funding

BMBF 033L038A MILIEU (FU Berlin)

Photo Credits

Skyglow (Orion): Jeremy Stanley (Wikipedia Commons)

Map of Berlin: FU Berlin

Globe at Night

HPS Spectrum: Elvidge et al. 2010

Fisheye Photo: Andreas Hänel

IYA Lightmeter: Lightmeter wiki

Glacier National Park: Ray Stinson

Urban Sky+SQM: Christopher Kyba

Light pollution map: WEW FU Berlin

Requirements for Long Term Light Pollution Monitoring Devices

- Must be robust
- In situ calibration should be possible
- Multispectral
 - Circadian disruption
 - Monitor shift to LED lighting
- Inexpensive / Easy to operate
- Temperature stable (ideally warmed)
- Zenith vs. 180°